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A simple modification is described that may bc used to add limited compressibility 
effects to incompressible hydrodynamics computer codes. Several sample calculations are 
discussed and used to compare the relative advantages of implicit and explicit time inte- 
gration methods. It is also shown that the USC of an artificially reduced speed of sound is 
not, in general, a good approximation for low speed fluid problems. 

1. INTKODUCTION 

Although incompressible hydrodynamics codes are useful for a great variety of low 
speed fluid dynamic problems, there do arise situations in which it is desirable to 
include some compressibility effects. For example, in Boiling Water Reactor pressure 
suppression pools the injection of steam, arising from a normal operating transient 
or from a postulated loss of coolant accident, can produce steam bubbles that grow 
then suddenly collapse generating sharp pressure pulses in the pool. Most of the growth 
and collapse dynamics is well dcscribcd by treating the water as an incomprcssiblc 
fluid [l]. However, at the instant of complete collapse the pressure pulses produced 
exist for times comparable to the time for sound waves to travel across the pool, so 
that compressibility effects are needed to accurately describe the pulse shape. 

Another example arises in laboratory model tests of pressure suppression pools. 
When air bubbles arc prcscnt in the pool water, the water-air mixture can have a 
large enough compressibility to significantly influence the test data [2]. In both 
examples, the compressibility effects are associated with acoustic waves and a fully 
nonlinear compressible model is not required. 

Thus, to account for such effects we have devised a simple modification that may be 
made to many existing incompressible hydrocodcs. WC illustrate the method in the 
SOLA-VOF code [3], which uses a variant of the well-known Marker and Cell (MAC) 
technique [4]. This code has been successfully used [5] to model suppression pool 
experiments performed at MIT (Ref. [6]) and at SRT (Ref. [7]). The modificat.ion is 
directly transferable to most other codes originally designed only for incompressible 
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fluids, and which use the primary dependent variables of pressure and veiocltys 
Several of these codes are publicly available from the National Energy Software 
Center 181. 

The basic idea and its limitations are outlined in the next section. Finally, 
Section IEt presents the results of several test calculations illustrating the capabilities 
of the new method. One observation drawn from the examples is that it is not always 
possible or wise to approximate incompressible flows using a compressible flow model 
with an artificially low sound speed. 

II. THEORY AND IMPLEMENTATION 

The equations of motion describing a compressible fluid are 

U-VU = -$+A, 

where A represents all gravit,ational accelerations, viscous stresses, or other impressed 
accelerations on the fluid. The exact form of A is not important for the following 
discussion. To complete this equation set we assume that the fluid pressure is only z 
function of density. In particular, that 

where c is the adiabatic speed of sound. Although c may be time- or space-dependent, 
in this note we shall simply assume it is a constant. Thus, our basic approximation Is 
that only adiabatic fluid changes are to be considered. This is consistent with the 
standard acoustic approximation [9]. 

We shall also assume that density changes remain smalli i.e., Q/p < 1. This 
assumption implies that U/C < 1 (see, for example, Ref. [9, p. 2451). It is the small 
density variation assumption that makes the inclusion of compressibility effects in 
SOLA-VOF especially easy. However, this assumption also requires us to refer to 
the method as one of “limited compressibility.” Because density changes are small 
we expand Eqs. (l)-(2) in powers of Gp/po about the constant mean density pP . 
Retaining only the lowest order terms, and using Eq. (3) we have 



392 HIRT AND NICHOLS 

Furthermore, because u/c < 1 we have to the same order, 

dp - 2Qu.Vp 
Z - at 

ap 
WY& 

Without loss of generality we may take p0 equal to unity, provided we remember this 
when scaling to any particular set of dimensional units. Thus, Eqs. (4)-(5) become 

g+ u - Vu = -0p -/- A, (6) 

;g+v * u = 0. 

Equations (6)-(7), which constitute the limited compressibility model, differ from 
the purely incompressible equations only by the appearance of the pressure term in 
Eq. (7); the momentum equations remain unchanged. It should also be noted that all 
boundary conditions involve the specification of velocities or pressures and are inde- 
pendent of whether the fluid is compressible or not. 

To add the extra term appearing in the continuity equation, Eq. (7), to typical 
incompressible fluid algorithms it is necessary to introduce one additional storage 
array for the old-time-level pressures and to add an input constant for the sound 
speed. 

In all incompressible codes, the continuity equation is treated implicitly. For 
example, in MAC codes the condition of a zero velocity divergence is treated as an 
equation for the pressure and is solved by iteratively adjusting the pressures and 
velocities [4, 81. Alternatively, a Poisson equation for pressure may be derived by 
combining the incompressibility condition with the momentum equations. Iterative 
solutions of this equation are equivalent to the usual MAC solution method [IO]. 
In any case, there is a difference equation and corresponding pressure for each cell 
of the computational mesh. A solution is usually obtained through the use of a 
Newton-Raphson method. For example, define F = 0 . u for a typical cell in the 
mesh. The approximate pressure change in that cell needed to drive F to zero is 

The function F is linear in the pressure and only one application of Eq. (8) is needed 
in each cell during a pass through the mesh. It is necessary, however, to sweep through 
the mesh several times, because an adjustment of the pressure in one cell will affect 
the divergence of al1 neighboring cells. 
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In the case of limited compressibility the F function for a celi becomes 

where p is the new pressure to be solved for and p” is the pressure from the previous 
cycle. The corresponding derivative is 

where (GFjip), is the relaxation parameter used in the purely incompressible case: 
An iterative solution using Eq. (8) will drive F to zero in each cell, which insures that 
Eq. (7) is satisfied. 

Various generalizations of this limited compressibility model are possible. For 
example, the sound speed could be a specified function of space and time, which would 
require the use of another storage array. If the speed is a function of temperature or 
air bubble void fraction then it might be desirable to add a full transport equation 
for the temperature or void fraction. The restriction to small density variations could 
also be eliminated, but would then require an array for the density, inclusion of the 
convective density changes neglected in Eq. (7), density boundary conditions, and 
modifications to the momentum equation. Although the same numericai solution 
strategy currently used, for example in the SOLA-VOF code, would be applicable 
in this general case, it clearly requires more extensive changes to the code. 

III. SAMPLE CALCULATIONS Ahi~ DmmsIot~ 

A. A One-Dimensional Test Problem 

A simple one-dimensional problem demonstrates the capability of the proposed 
method to treat the dynamics of slightly compressible fluids. Consider a column of 
fluid of unity height, bounded by a rigid wall at one end and by a free surface at the 
other end. The fluid is initially at rest, has zero pressure, and a dimensionless sound 
speed of 100. At time t = 0, an applied pressure of unit magnitude is applied to the 
free surface. At time t = 0.005, the pressure wave should have moved a distance oi0.5 
into the fluid column. Figure 1 shows the results at this time obtained by three different 
computations, which resolved the fluid column by 20 cells of height 0.05. In the first 
two cases, a t&e step of 6t = 0.00025 was chosen. With this small time step, sound 
waves move a distance of 0.025 per step, which is one-half the width of a rmes*h cell 
used for the calculation. Thus, the Courant stability criterion needed for explicit 
integration schemes is satisfied and the implicit pressure solution used in the SOLA- 
SiOF code is unnecessary. To provide a basis for comparison, therefore, we modified 
the SOLA-VOF code for one calculation to be explicit. The results of this calculation 
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are compared in Fig. 1 with a calculation using the same small time step and the 
implicit SOLVA-VOF method described in Section II. Approximately three to four 
iterations per time step were required to satisfy the convergence criterion (I F / < 10-3) 
chosen for the iteration. The two calculations provide somewhat different approxi- 
mations to the wave front, which should be a step discontinuity in the present model. 
The explicit method exhibits oscillations trailing the front, while the implicit method 
shows a monotonic increase. Although the explicit front is steeper, its width including 
oscillations is comparable to the width of the implicit wave front. An explanation 
of this behavor will be given below, but first it is worthwhile to compare these results 
with calculational results obtained using a time step that exceeds the Courant stability 

0 0.25 0.5 0.75 I .o 

DEPTH 

FIG. 1. Pressure profiles computed in one-dimensional test probIem, using different time steps 
and integration methods. 

limit. In Fig. I, the curve corresponding to 6t = 0.001 was obtained with twice the 
maximum time step that can be used in the explicit method. This calculation has 
moved the mid-point of the pressure wave approximately 10 cells in 5 cycles of 
computation, but it does so at the expense of accuracy. The pressure wave is consider- 
ably broader, and continues to broaden as the time step increases. In fact, when the 
time step is 100 times larger (8t = 0.1) the pressure is nearly equal to the applied 
value of unity throughout the entire column of fluid after one cycle of calculation,. see 
Fig. 1. Many iterations are required to reach convergence, but the result is what one 
would expect in an “incompressible” fluid. That is, when 6t = 0.1, the pressure 
wave can traverse the length of the fluid column 10 times during each time step, and 
with some dissipation present (as in real fluid) the wave should eventually damp out 
leaving a constant unit pressure everywhere in the fluid. The numerical dissipation 
built into the implicit integration method does this automatically. In contrast, an 
explicit calculation without dissipation would continue to follow the wave and it 
would be necessary to time average the results to obtain a uniform pressure distri- 
bution. 

The above, empirical, results regarding accuracy in the explicit versus the implicit 
integration method can be approached in another way. If the finite-difference equations 
used in the explicit and implicit methods are linearized, a Fourier analysis can be 
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performed to obtain the time amplification factor, r, for a mode with wave nlamber k. 
The result for the explicit method shows that r = 1 when the Courant number, 
c&/6x, is less than or equal to unity. When the Courant number exceeds unity i’ is 
greater than one and the explicit method is unstable. Therefore, when stable, the 
explicit method exhibits no damping of pressure waves. There is, however, some 
dispersion and this accounts for the oscillations and spread of the pressure wave in 
Fig. 1. In contrast, the implicit method has the amplification factor (1 + .;~“j-‘i~, 
where p = 2(&/6x) sin(Mx/2). The implicit method is always stable because Y is 
never greater than unity, but by the same token pressure waves are always damped. 
Ht is this feature of the implicit method that characterizes both its weakness and its 
strength. In particular, when Courant numbers much larger than unity are used in a 
calculation pressure waves are highly damped, which is the reason that the method 
passes to the correct incompressible limit. 

On the other hand, when very small Courant numbers (much less than unity) are 
used, the implicit method has little damping and will give results that are at least as 
good as those obtained with an explicit calculation. 

Unfortunately, economy usually requires the use of a Courane number near uniry, 
To understand wbat happens in this case, consider a Courant number of 
l/2, which is typical in explicit calculations. Then the implicit amplification factor is 
[I + sin”(k6x/2)]-11”. Clearly disturbances having the smallest resolvable wave 
lengths +28x) are highly damped, but the damping rapidly diminishes as the wave 
length increases. Thus, when the Courant number is near unity, the implicit method 
will only be accurate for waves that are spatially well resolved. This aspect of the 
5nplicii method is not all bad, however, for it means there is an automatic mechanism 
for removing high frequency noise (e.g., trailing oscillations) that sometimes is a 
problem in explicit calculations. 

En summary, when it is of interest to investigate wave phenomena on short time 
scales, then small time steps that limit wave propagation to less than one cell per time 
cycle must be used for reasons of accuracy. On the other hand, for phenomena on 
time scales long with respect to the transit time of sound waves, the implicit method 
provides the correct asymptotic answer, while an explicit method must be modified 
to have dissipation, or its results must be time averaged. Unfortunately, for more 
complicated problems, the use of wave dissipation or time-averaging techniques may 
be difflcuit to apply without affecting some of the slow transient phenomena of 
interest. Furthermore, as the distinction between slow and fast processes gets more 
pronounced (e.g., as c gets larger with respect to the fiuid particle speed) an explicit 
method wi!l req.uire increasingly more computational time, whereas tbe implicit 
method will not. It is in this limit that implicit methods arc far superior to expiici!: 
schemes. 

It has been suggested that one solution to the last problem is to use an explicit 
compressible hydrocode with an artificially small sound speed. The idea being that a 
flow with Mach number (U/C) on the order of 0.3 or less will closely approximate an 
incompressible flow. That this is not always the case may be seen from the next 
example. 
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B. Influence of Air Bubbles on Suppression Pool Dynamics 

When air or steam is forced through a pipe (vent) whose end is immersed in a pool 
of water, Fig. 2, the pool container is subject to a variety of hydrodynamic forces. 
Several experimental programs have recently been conducted [6,7,11,12] to investi- 
gate these forces to better understand similar phenomena [13] that occurs in postulated 
loss of coolant accidents in boiling water reactors (BWR). During the course of the 
MIT experimental study to confirm scaling laws for vent clearing phenomena [6] it 
was discovered, that the presence of small air bubbles in the pool produced significant 
oscillations in the pressure measured on the pool floor. Moreover, these oscillations 
were observed to increase in magnitude as the bubble number increased. An inter- 
pretation of this phenomenon is that the bubbles provide a springiness to the fluid, 
which can then “bounce” on the floor. 

Pa-+ 

ii 

-cc Orifice 

. l-----l 

PI 
MIT Test Facility 

FIG. 2. Schematic of suppression pool model apparatus used at MIT. Floor pressure transducer 
located at PI. 

The springiness in a fluid caused by suspended air bubbles may be represented by 
asigning to the fluid a smaller velocity of sound (or bulk modulus). Thus, the new 
compressibility feature in the SOLA-VOF code can be used to theoretically investigate 
the consequences of having air bubbles in the pool during vent clearing. Results from 
a typical calculation simulating the MIT tests are illustrated by the fluid configurations 
and velocity fields shown in Fig. 3. Figure 4 shows the computed floor pressure results 
from three calculations in which the only difference is the fluid sound speed. In Fig. 4A, 



FIG. 3. Typical velocity field and fluid configuration history as computed by the SOL&V 
code in a simulation of an MIT test. 
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FIG. 4. (A) Floor pressure history computed during vent clearing with an incompressible fluid. 
(B) Floor pressure history computed during vent clearing with a fluid whose sound speed is one 
fifth that of water. (C) Floor pressure history computed during vent clearing with a fluid whose sound 
speed is one-tenth that of water. 

the fluid was treated as incompressible (c = co). In Fig. 4B, the sound speed was set 
at approximately one-fifth the speed of sound in water, while in Fig. 4C, it was appro- 
ximately one-tenth the normal speed. A comparison of the three results shows 
dramatic differences. As the sound speed is lowered, oscillations in floor pressure 
rapidly increase in magnitude and in period. The computed results look remarkably 
like the MIT experimental results [6], although a direct comparison cannot be made, 
because we did not use the same test conditions. 

The above results have important implications with regard to the proper use of 
compressible versus incompressible hydrodynamic computer codes. For low speed 
problems such as that described here, in which the fluid moves slowly with respect to 
the speed of sound, it would be impractical to use a compressible model. To do so 
would require the computation of pressure waves traversing back and forth across the 
pool thousands of times during the vent clearing process. Even if the computations 
could be carried out accurately, they would consume an unacceptable amount of 
computer time. As a possible way around this difficulty, some investigators have 
suggested reducing the sound speed in the fluid to the point where computations 
can be economitially carried out. The justification given for this procedure is that flows 
at Mach numbers (u/c) below about 0.3 (e.g., Ref. [14, p. 91) often behave much like 
incompressible flows. While this may be true for some problems, provided the right 
flow features are considered, it is clear from the above example that the procedure is 
not general. 
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In particular, hydrodynamic forces may exhibit unrealistic acoustic osciiiations. 
Also in coupled fluid-structure calculations, artificiahy low acoustic frequencies may 
excite incorrect structure response. Similarly, artificially large density variations 
associated with reduced sound speeds could adversely affect buoyancy-driven 30~s. 
Although other examples could be cited, this list is sufficient to emphasize that the 
practice of approximating an incompressible flow by a compressible Aow with sma3. 
but not negligible compressibility, must be employed with extreme caution. 

A useful criterion covering some of the above cases has been given by Landau and 
Lifshitz (Ref. 19, p. 24-J). In addition to the low Mach number requirement, there is 
another condition that must be satisfied for transient problems before a flop may be 
considered as incompressible. If T and L represent time and space scales in m’b.ich the 
fluid velocity changes significantly, then this additional condition is CT > L. Thus, 
to approximate an incompressible flow with a compressible flow model reqisires tba: 
the sound speed be chosen sufficiently large that pressure waves will travel distances 
large with respect to L in time T. 
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